Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 52(3): 682-694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151644

RESUMO

Super-elastic bone staples have emerged as a safe and effective alternative for internal fixation. Nevertheless, several biomechanical aspects of super-elastic staples are still unclear and require further exploration. Within this context, this study presents a combined experimental and computational approach to investigate the mechanical characteristics of super-elastic staples. Two commercially available staples with distinct geometry, characterized by two and four legs, respectively, were examined. Experimental four-point bending tests were conducted to evaluate staple performance in terms of generated forces. Subsequently, a finite element-based calibration procedure was developed to capture the unique super-elastic behavior of the staple materials. Finally, a virtual bench testing framework was implemented to separate the effect of geometry from that of the material characteristics on the mechanical properties of the devices, including generated force, strain distribution, and fatigue behavior. The experimental tests indicated differences in the force vs. displacement curves between staples. The material calibration procedure revealed marked differences in the super-elastic properties of the materials employed in staple 1 and staple 2. The results obtained from the virtual bench testing framework have showed that both geometric features and material characteristics had a substantial impact on the mechanical properties of the device, especially on the generated force, whereas their effect on strain distribution and fatigue behavior was comparatively less pronounced. To conclude, this study advances the biomechanical understanding of Nitinol super-elastic staples by separately investigating the impact of geometry and material characteristics on the mechanical properties of two commercially available devices.


Assuntos
Ligas , Suturas , Calibragem , Fixação Interna de Fraturas
2.
Comput Methods Programs Biomed ; 242: 107781, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37683458

RESUMO

BACKGROUND AND OBJECTIVES: Bioresorbable braided stents, typically made of bioresorbable polymers such as poly-l-lactide (PLLA), have great potential in the treatment of critical limb ischemia, particularly in cases of long-segment occlusions and lesions with high angulation. However, the successful adoption of these devices is limited by their low radial stiffness and reduced elastic modulus of bioresorbable polymers. This study proposes a computational optimization procedure to enhance the mechanical performance of bioresorbable braided stents and consequently improve the treatment of critical limb ischemia. METHODS: Finite element analyses were performed to replicate the radial crimping test and investigate the implantation procedure of PLLA braided stents. The stent geometry was characterized by four design parameters: number of wires, wire diameter, initial stent diameter, and braiding angle. Manufacturing constraints were considered to establish the design space. The mechanical performance of the stent was evaluated by defining the radial force, foreshortening, and peak maximum principal stress of the stent as objectives and constraint functions in the optimization problem. An approximate relationship between the objectives, constraint, and the design parameters was defined using design of experiment coupled with surrogate modelling. Surrogate models were then interrogated within the design space, and a multi-objective design optimization was conducted. RESULTS: The simulation of radial crimping was successfully validated against experimental data. The radial force was found to be primarily influenced by the number of wires, wire diameter, and braiding angle, with the wire diameter having the most significant impact. Foreshortening was predominantly affected by the braiding angle. The peak maximum principal stress exhibited contrasting behaviour compared to the radial force for all parameters, with the exception of the number of wires. Among the Pareto-optimal design candidates, feasible peak maximum principal stress values were observed, with the braiding angle identified as the differentiating factor among these candidates. CONCLUSIONS: The exploration of the design space enabled both the understanding of the impact of design parameters on the mechanical performance of bioresorbable braided stents and the successful identification of optimal design candidates. The optimization framework contributes to the advancement of innovative bioresorbable braided stents for the effective treatment of critical limb ischemia.


Assuntos
Implantes Absorvíveis , Isquemia Crônica Crítica de Membro , Humanos , Estresse Mecânico , Stents , Polímeros , Desenho de Prótese
3.
J Mech Behav Biomed Mater ; 138: 105623, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36535095

RESUMO

Self-expandable transcatheter aortic valves (TAVs) elastically resume their initial shape when implanted without the need for balloon inflation by virtue of the nickel-titanium (NiTi) frame super-elastic properties. Experimental findings suggest that NiTi mechanical properties can vary markedly because of a strong dependence on the chemical composition and processing operations. In this context, this study presents a computational framework to investigate the impact of the NiTi super-elastic material properties on the TAV mechanical performance. Finite element (FE) analyses of TAV implantation were performed considering two different TAV frames and three idealized aortic root anatomies, evaluating the device mechanical response in terms of pullout force magnitude exerted by the TAV frame and peak maximum principal stress within the aortic root. The widely adopted NiTi constitute model by Auricchio and Taylor (1997) was used. A multi-parametric sensitivity analysis and a multi-objective optimization of the TAV mechanical performance were conducted in relation to the parameters of the NiTi constitutive model. The results highlighted that: five NiTi material model parameters (EA, σtLS, σtUS, σtUE and σcLS) are significantly correlated with the FE outputs; the TAV frame geometry and aortic root anatomy have a marginal effect on the level of influence of each NiTi material parameter; NiTi alloy candidates with pareto-optimal characteristics in terms of TAV mechanical performance can be successfully identified. In conclusion, the proposed computational framework supports the TAV design phase, providing information on the relationship between the super-elastic behavior of the supplied NiTi alloys and the device mechanical response.


Assuntos
Valva Aórtica , Próteses Valvulares Cardíacas , Níquel , Titânio , Ligas , Estresse Mecânico
4.
Circ Res ; 131(3): 239-257, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35770662

RESUMO

BACKGROUND: Conversion of cardiac stromal cells into myofibroblasts is typically associated with hypoxia conditions, metabolic insults, and/or inflammation, all of which are predisposing factors to cardiac fibrosis and heart failure. We hypothesized that this conversion could be also mediated by response of these cells to mechanical cues through activation of the Hippo transcriptional pathway. The objective of the present study was to assess the role of cellular/nuclear straining forces acting in myofibroblast differentiation of cardiac stromal cells under the control of YAP (yes-associated protein) transcription factor and to validate this finding using a pharmacological agent that interferes with the interactions of the YAP/TAZ (transcriptional coactivator with PDZ-binding motif) complex with their cognate transcription factors TEADs (TEA domain transcription factors), under high-strain and profibrotic stimulation. METHODS: We employed high content imaging, 2-dimensional/3-dimensional culture, atomic force microscopy mapping, and molecular methods to prove the role of cell/nuclear straining in YAP-dependent fibrotic programming in a mouse model of ischemia-dependent cardiac fibrosis and in human-derived primitive cardiac stromal cells. We also tested treatment of cells with Verteporfin, a drug known to prevent the association of the YAP/TAZ complex with their cognate transcription factors TEADs. RESULTS: Our experiments suggested that pharmacologically targeting the YAP-dependent pathway overrides the profibrotic activation of cardiac stromal cells by mechanical cues in vitro, and that this occurs even in the presence of profibrotic signaling mediated by TGF-ß1 (transforming growth factor beta-1). In vivo administration of Verteporfin in mice with permanent cardiac ischemia reduced significantly fibrosis and morphometric remodeling but did not improve cardiac performance. CONCLUSIONS: Our study indicates that preventing molecular translation of mechanical cues in cardiac stromal cells reduces the impact of cardiac maladaptive remodeling with a positive effect on fibrosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fosfoproteínas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fibrose , Humanos , Camundongos , Fosfoproteínas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Verteporfina , Proteínas de Sinalização YAP
5.
J R Soc Interface ; 19(188): 20210871, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35350882

RESUMO

In-stent restenosis (ISR) is a maladaptive inflammatory-driven response of femoral arteries to percutaneous transluminal angioplasty and stent deployment, leading to lumen re-narrowing as consequence of excessive cellular proliferative and synthetic activities. A thorough understanding of the underlying mechanobiological factors contributing to ISR is still lacking. Computational multiscale models integrating both continuous- and agent-based approaches have been identified as promising tools to capture key aspects of the complex network of events encompassing molecular, cellular and tissue response to the intervention. In this regard, this work presents a multiscale framework integrating the effects of local haemodynamics and monocyte gene expression data on cellular dynamics to simulate ISR mechanobiological processes in a patient-specific model of stented superficial femoral artery. The framework is based on the coupling of computational fluid dynamics simulations (haemodynamics module) with an agent-based model (ABM) of cellular activities (tissue remodelling module). Sensitivity analysis and surrogate modelling combined with genetic algorithm optimization were adopted to explore the model behaviour and calibrate the ABM parameters. The proposed framework successfully described the patient lumen area reduction from baseline to one-month follow-up, demonstrating the potential capabilities of this approach in predicting the short-term arterial response to the endovascular procedure.


Assuntos
Reestenose Coronária , Artéria Femoral , Constrição Patológica , Expressão Gênica , Hemodinâmica , Humanos
6.
Med Eng Phys ; 85: 7-15, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33081966

RESUMO

Decellularized extracellular matrix is one of the most promising biological scaffold supporting in vitro tissue growth and in vivo tissue regeneration in both preclinical research and clinical practice. In case of thick tissues or even organs, conventional static decellularization methods based on chemical or enzymatic treatments are not effective in removing the native cellular material without affecting the extracellular matrix. To overcome this limitation, dynamic decellularization methods, mostly based on perfusion and agitation, have been proposed. In this study, we developed a low-cost scalable 3D-printed sample-holder for agitation-based decellularization purposes, designed for treating multiple specimens simultaneously and for improving efficiency, homogeneity and reproducibility of the decellularization treatment with respect to conventional agitation-based approaches. In detail, the proposed sample-holder is able to house up to four specimens and, immersed in the decellularizing solution within a beaker placed on a magnetic stirrer, to expose them to convective flow, enhancing the solution transport through the specimens while protecting them. Computational fluid dynamics analyses were performed to investigate the fluid phenomena establishing within the beaker and to support the sample-holder design. Exploratory biological tests performed on human skin specimens demonstrated that the sample-holder reduces process duration and increases treatment homogeneity and reproducibility.


Assuntos
Matriz Extracelular , Engenharia Tecidual , Humanos , Perfusão , Impressão Tridimensional , Reprodutibilidade dos Testes , Alicerces Teciduais
7.
Med Eng Phys ; 84: 1-9, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32977905

RESUMO

Physical stimuli are crucial for the structural and functional maturation of tissues both in vivo and in vitro. In tissue engineering applications, bioreactors have become fundamental and effective tools for providing biomimetic culture conditions that recapitulate the native physical stimuli. In addition, bioreactors play a key role in assuring strict control, automation, and standardization in the production process of cell-based products for future clinical application. In this study, a compact, easy-to-use, tunable stretch bioreactor is proposed. Based on customizable and low-cost technological solutions, the bioreactor was designed for providing tunable mechanical stretch for biomimetic dynamic culture of different engineered tissues. In-house validation tests demonstrated the accuracy and repeatability of the imposed mechanical stimulation. Proof of concepts biological tests performed on engineered cardiac constructs, based on decellularized human skin scaffolds seeded with human cardiac progenitor cells, confirmed the bioreactor Good Laboratory Practice compliance and ease of use, and the effectiveness of the delivered cyclic stretch stimulation on the cardiac construct maturation.


Assuntos
Reatores Biológicos , Engenharia Tecidual , Humanos , Alicerces Teciduais
8.
J Healthc Eng ; 2019: 3957931, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178986

RESUMO

Three-dimensional (3D) printing represents a key technology for rapid prototyping, allowing easy, rapid, and low-cost fabrication. In this work, 3D printing was applied for the in-house production of customized components of a mechanical stretching bioreactor with potential application for cardiac tissue engineering and mechanobiology studies. The culture chamber housing and the motor housing were developed as functional permanent parts, aimed at fixing the culture chamber position and at guaranteeing motor watertightness, respectively. Innovative sample holder prototypes were specifically designed and 3D-printed for holding thin and soft biological samples during cyclic stretch culture. The manufactured components were tested in-house and in a cell biology laboratory. Moreover, tensile tests and finite element analysis were performed to investigate the gripping performance of the sample holder prototypes. All the components showed suitable performances in terms of design, ease of use, and functionality. Based on 3D printing, the bioreactor optimization was completely performed in-house, from design to fabrication, enabling customization freedom, strict design-to-prototype timing, and cost and time effective testing, finally boosting the bioreactor development process.


Assuntos
Reatores Biológicos , Impressão Tridimensional/instrumentação , Engenharia Tecidual/instrumentação , Biofísica/instrumentação , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...